Populating Your Data Model with A Query

Over the last two weeks we talked about normalizing your logical data model in PowerPivot to help make it easier for users to understand and work with (https://sharepointmike.wordpress.com/2015/03/21/your-logical-data-model-is-not-normal/) and (https://sharepointmike.wordpress.com/2015/03/28/dealing-with-blanks-in-your-data-model/). However, in each of these models, we did all the data manipulation inside the data model. That left a lot of technical fields and tables that we could not remove from the model, but which took extra memory which could limit the size of our data model. So how do we solve that problem? We could do much of the data manipulation outside of the data model or as part of the import step. Let’s see how.

I’m going to start by importing product data from the Access database version of Contoso into the Power Pivot data model.

In the Table Import Wizard, I’m going to select the option to write a query that will specify the data to import. This option allows me to combine data from the dimProduct, dimProductCategory, and dimProductSubCategory tables into a single file. I can also embed the calculation to fix the blank Class fields we visited last time.

Clicking Next, I see the Specify a SQL Query dialog. This is an intimidating dialog. I could manually enter a SQL query here. However, I would have to know all the field names from all the tables that I want to bring together. Not impossible, but there has got to be an easier way. Wait. What is this Design button in the bottom right of the dialog?

When I click the Design button, I get an equally intimidating dialog that looks like it has an area at the top to again manually enter a SQL statement and a grid area at the bottom to display the results of the SQL statement if I were to test run it by clicking the exclamation point (!). Obviously, this screen is not very friendly toward building Access database queries. Nowhere near as friendly as the query builder inside Access itself.

If I go back into Access and build my query there using the query builder, I can visually design my query. First, I add the tables I want to use from the Show Table dialog that appears when I open the Query Designer from the Create ribbon. Then I can add the fields I want to include from any of the included tables by double clicking on their names in the tables at the top of the dialog.

I can even create my calculated column here by entering a new name in the row of the design grid followed by a colon (:). Then I can use the same expression as I did last time to test the value in the ClassName field.

NewClassName: IIF(([ClassName]=””),”[No Class]”, [ClassName])

Note that the IIF() function in Access has a double ‘I’. Otherwise, it works the same. Also note that I’m using a different name for the new column here to keep it separate from the field in the table dimProduct.

After I have finished creating the query, I can test it by clicking the Run button in the Query Tools Design window. If the query executes correctly, I am ready to copy my query to my Power Pivot data load screen. If I open the dropdown menu under SQL View in the Query Tools Design window, I see an option: SQL View as well as some other views.

This option displays the SQL statement which I can copy and then paste back in the Excel Data Model Table Import Wizard as shown below.

If I were to try to run this query directly, it would fail. Admittedly, it took me awhile to figure out why. I finally found that it did not like the one field definition: dimProduct.Size. To test what was going on, I clicked on the Design button to take me to the screen which displays both the SQL query and a grid of results from testing the query. After some testing, I found that if I redefined this field as: dimProduct.[Size], the parsing engine was happy and gave me the results I expected as shown below. The square brackets are used to clarify to the browser that the text within the brackets represent a field name, not a command or reserve word.

I then clicked OK for this screen and Finish on the next screen. I was rewarded with the data engine reading and loading my Product data. Note that it is a single table now. By including the name of the product category and the product subcategory in my query, I no longer need those two additional tables thus reducing the overall size of my data model a bit.

Next I still need to load the Sales data from Contoso along with the date and channel tables. The follow screen shows that I can open the Access database a second time to extract the other tables leaving out the product and related tables.

After the FactSales table is loaded, I still need to create a relationship with the new Product table I pulled in with the query. Even though FactSales and dimProduct were linked in the original Access database, by loading the tables separately, the relationship is not automatically discovered. Therefore, I have to use the Create Relationship dialog to link these two tables.

If I were to display the diagram view of my Power Pivot data model, you can see that the model has been simplified down to only four tables rather than six as we used before.

If I now build the same Pivot table that I did last week to shows sales by class, you can see in the following figure that the results are the same.

I can even create a hierarchy in my product table to go from category to subcategory to product. I covered building hierarchies before (). After building the hierarchy, I strongly recommend hiding the supporting columns so as to not confuse the end-users. (See: https://sharepointmike.wordpress.com/2012/07/21/power-pivot-hierarchies-part-2-of-powerpivot-2012-series/)

Denormalizing your data as you import it may sound a bit more complex, but it can save you memory and Power Pivot’s main limitation is that it must hold the entire data model in memory. So the smaller you can make that model, the more data you can load into it.

Some people might ask how far do I denormalize the model. Of course, in theory, you could denormalize to a perfectly flat single table. However this is not practical as it can serious limit the flexibility of the model and it can even cause other data errors. I tend to think in terms of model objects. For example, Products are an object in the model. Therefore, collapsing the Product Subcategory and Product Category tables into Product makes sense to me. If I had tables Stores, Cities, Countries, and Geography, I might be tempted to collapse them together as well since they represent a Location object for sales. On the other hand, I would not denormalize all the product information into the FactSales table.

So if you are thinking that there is no hard and fast answer to when should you denormalize a model, that is somewhat true. It is a bit of an art. However, if you have a table that is used just as a lookup for a name or perhaps one or two other associated fields and it is not a role playing table (See: https://sharepointmike.wordpress.com/2012/07/21/power-pivot-hierarchies-part-2-of-powerpivot-2012-series/), denormalize that table.

That’s it for this series. C’ya next time.

Advertisements